旋转执行器:电气化架构下机器人基础组成单元,随 人形机器人发展迎来新的增长机遇
旋转执行器是电气化架构下机器人的基础组成单元,广泛应用于各类机器人。机器人 常见的驱动方式包括液压驱动、气压驱动、电气驱动等,在各类驱动架构中,电气驱动架 构具备控制精度高、响应速度快、结构紧凑等优点,因此适用于协作机器人以及各类仿生 机器人中。旋转执行器是电气化架构下机器人的最基础单元,常见于各类电气驱动机器人 中。
旋转执行器主要由电机、减速器、传感器、控制器等零部件组成。旋转执行器以电机 作为动力来源,经过减速器调节到所需的力矩输出范围,最终通过传感器以及控制器实现 伺服控制。
旋转执行器为机器人提供自由度,用途复杂度越高所需旋转执行器数目越多。机器人 的自由度指机器人所具有的独立坐标轴运动的数目。一般而言,机器人的自由度越高,越 能够实现高复杂度的任务。旋转执行器是常见的一种提供独立自由度的装置,因此机器人 用途的复杂度越高,机器人上的旋转关节越多。
此外,旋转执行器自身的性能还直接影响机器人的承载力和精度等性能。机器人负载 指的是在正常工作工况下,机器人末端能承受的最大载荷。在电气化架构下,旋转执行器 为机器人提供动力,因此末端所承受的载荷会加载到各旋转执行器下,旋转执行器的负载 能力和机器人的结构设计共同决定了机器人的负载能力;同样的,机器人末端的运动也来 自于各关节处旋转执行器的运动,旋转执行器的运动精度和机器人的结构设计决定了机器 人末端的精度。
工业机器人市场需求相对成熟,行业处于稳定增长期。根据国际机器人联合会(IFR) 的数据,2017/2018 /2019/2020/2021/2022 年全球工业机器人部署量分别为 40 万/42.3 万 /39.1 万/39.4 万/51.7 万/55.3 万台,年化复合增速为 7%。工业机器人市场相对需求,IFR 预计后续该市场将继续保持年化 7%的复合增速,行业处于稳定增长期。
特斯拉让人形机器人重回大众视野,有望引领行业突破智能化、成本和商用场景三大 瓶颈。人形机器人并不是一个新生事物,早在 1986 年,日本本田公司就发布了全球首个 商业用途人形机器人 ASIMO,具备完整的身体运动能力。但过去的人形机器人智能化程 度不足,能力受限;成本高昂,单个成本在十几万美金甚至几十万美金以上;智能化程度 不足并且成本昂贵,使得人形机器人的应用场景并不明确,过去智能化程度、应用场景、 成本问题相互制约。随着人工智能大模型的发展以及特斯拉的入场,人形机器人的三大瓶 颈有望得到突破。End-to-end 端到端模型的发展,使得以往复杂的场景理解和建模过程可 以被简化,通过海量的训练数据直接训练,特斯拉在 FSD 上端到端网络的成功以及 Dojo 的训练平台有望得到复用;成本上,规模化是特斯拉最擅长的“法宝”之一,成功在新能源汽车上将成本大幅降低,机器人上有望复现当年新能源车技术及规模降本路径;应用场 景段,特斯拉拥有 Fremont、Shanghai、Austin、Berlin、Mexico 五大超级工厂,自身对 于用工有大量需求,具备人形机器人替人的潜力,早期的内部部署有望验证人形机器人能 力,进而实现更大范围推广,技术-应用-成本飞轮有望开始转动。
特斯拉运动控制能力和智能化水平不断升级,迭代速度超预期。2021 年 8 月,特斯 拉在其首届 AI Day 上公布人形机器人业务规划,提出人形机器人的概念设计;2022 年 9 月,特斯拉在提出概念设计仅一年后,披露机器人的硬件设计细节,并在发布会现场做了 实物演示;2023 年 3 月、5 月、10 月特斯拉相继放出人形机器人 Optimus 在软件算法上 的最新进展,在 end-to-end 网络的导入下,机器人从缓慢行走到加速行走再到完成高难度 瑜伽动作,机器人的运动控制能力大幅提升;从简单的物体识别到可以根据颜色分拣,机 器人的智能化水平也在不断升级。从概念提出到实现一定难度的工作HahaBet官网,两年时间机器人从 无到有,从硬件升级到软件迭代,机器人的整体进展速度超市场预期。
旋转执行器中电机和减速器的选择存在多条技术路线,高减速比和准直驱 方案是两条主流路线
人形机器人的旋转执行器处于高扭矩、低转速的工作环境,因此电机往往需要搭配减 速器使用。类似于人类身体上的关节,机器人的旋转执行器处于高扭矩、低转速的工作环 境中。在电气化架构的机器人中,电机是关节的动力输入,而电机的工作原理是旋转磁场 获得转动力矩,大多数电机适用于高转速的工作环境。因此,根据功率守恒定律,减速器 通过降低输出转速,可以获得更大的输出扭矩,机器人的旋转关节往往使用电机搭配减速 器调节所需的转速和输出扭矩区间。
常见的电机种类包括无框电机、空心杯电机、伺服电机和步进电机,人形机器人对功 率密度要求较高,无框力矩电机在人形机器人里面的应用较为常见。衡量电机的主要指标 包括功率、尺寸、成本、精度等。无框电机采用无框架设计,功率密度高,中空的设计适 合与减速器搭配使用,因此在人形机器人里面的应用较为常见。无框力矩电机又可以分为 纵向磁通设计和横向磁通设计,主要区别在于磁铁的充磁方向和线圈的绕线方式。纵向磁通设计工艺更成熟,良率更高,而横向磁通设计具备更高的扭矩输出,但工艺较为复杂。
行星减速器、谐波减速器、摆线减速器和 RV 减速器是几种最常见的减速器形式,人 形机器人对减速器体积和自重要求较高,谐波减速器和行星减速器最为常见。减速器的主 要指标包括减速比、传动精度、体积、负载能力、成本等。其中,减速比影响电机扭矩的 放大倍数,在机器人等高扭矩的应用场景中,减速比越高,扭矩输出越高;传动精度影响 关节输出的控制精度;体积和负载对机器人关节所处位置的空间以及所需载荷做出了限制; 成本影响机器人整体的制造成本。考虑到减速器体积大小和自重的限制,摆线和 RV 减速 器并不常见,谐波和行星减速器是两种最常见的减速器。
因此在高扭矩、低转速的需求下,执行器中电机和减速器的选择具备多种选择方案: 高减速比方案:高转速、低扭矩电机搭配高传动比减速器。高转速、低扭矩的电机经 过高减速比传动后,转化为低转速、高扭矩的输出。高减速比方案的优势在于,输出扭矩 大、传动的精度高,可以实现精准的运动控制;高减速比方案的劣势在于,对减速器的体积和自重要求较高,同时在做力控时需要额外布置力矩传感器,该方案成本较高。 准直驱方案:高扭矩电机+低减速比行星减速器。实现低转速、高扭矩输出的另一条 思路是,直接采用高扭矩电机搭配低减速比的行星减速器。准直驱方案的优势在于,行星 减速器的传动较为刚性,可以通过电机的电流环反算关节的力矩,不额外依赖力矩传感器, 整体的成本较低;准直驱的劣势在于,高扭矩密度电机体积较大或成本高,并且对电机散 热要求高,并且行星传动的运动精度受到齿轮啮合回差的影响难以保证。
2022 年 9 月,特斯拉在 AI Day2 上公布了人形机器人的硬件设计方案,全身共有 28 个身体关节(14 个旋转执行器、14 个线 个手指关节方案HahaBet官网。旋转执行器采 用无框力矩电机+谐波减速器的技术方案。14 个旋转关节采用 3 种标准化的设计规格,其 中最大的关节扭矩为 180Nm,重量为 2.3kg。
LOLA 是慕尼黑工业大学研发的目标实现快速、类人行走的机器人,身高 180cm,自 重 55kg,全身具备 22 个自由度。LOLA 机器人在髋部、脚趾、腰部、肩部、肘部和腕部 采用了旋转执行器,膝部和踝部使用了直线执行器。LOLA 旋转执行器采用了高减速比方 案,使用了减速比为 50 和 100 的谐波减速器,旋转执行器峰值扭矩为 370Nm,扭矩密度 达 130Nm/kg。
JAXON 是顶尖人形机器人实验室东京大学 JSK Lab 研发的全尺寸机器人,目标是实 现高速、高扭矩的关节运动。JAXON 身高 188cm,自重 127kg,总自由度为 32 个。JAXON 的旋转关节使用了高减速比方案,采用了 MAX EC-4pole 电机,搭配哈默纳克谐波减速器, 单电机关节的最大扭矩达 393.6Nm。
2022 年 8 月,小米发布全尺寸人形仿生机器人 Cyberone,身高 177cm,自重 52kg, 全身 21 个自由度。从发布会的旋转关节爆炸图推测,关节采用了无框力矩电机+谐波减速 器的方案,根据发布会信息,旋转关节的峰值扭矩为 300Nm,峰值扭矩密度为 96Nm/kg。
2023 年 8 月,小米发布第二代仿生四足机器人 Cyberdog2 以及旋转执行器产品 Cybergear。Cyberdog2 身高 36.7cm,自重 8.9kg,具备 12 个四肢自由度。旋转执行器 采用自研的 CyberGear 关节,根据爆炸图推测,关节采用了无框力矩电机+行星减速器的 方式。CyberGear 峰值功率为 12Nm,扭矩密度为 38Nm/kg,售价仅为 499 元。
Unitree go1 是宇树科技下全球首款消费级伴随仿生四足机器人,身高 58.8cm,自重 12kg,自适应负载能力3-5kg。大腿关节处旋转执行器采用准直驱方案,峰值功率 23.7Nm, 重量仅为 520g。
2023 年 7 月,傅利叶智能发布通用人形机器人,身高 165cm,自重 55kg,全身具备 44 个自由度,采用自研的 FSA 关节,采用大功率电机+行星减速器的准直驱方案,最大峰 值扭矩 230NM。
远征 A1 身高 175cm,体重 53kg,最高步速可达 7km/h,整机承重 80kg,单臂最 大负载 5kg。全身共有 49+自由度,使用自研的 PowerFlow 关节电机,采用高功率电机+ 行星减速器方案,集成了液冷系统,峰值扭矩超过 350Nm,重量仅 1.6kg。
从各家公布的技术方案和参数来看,在不额外增加系统复杂度的条件(如增加液冷系 统)下,高减速比方案能达到更高的扭矩密度,提供更高负载;而准直驱方案的成本更低, 更加适用于小负载的关节,以及四足机器人、教育机器人等轻型机器人中。
高减速比方案的优势在扭矩密度更优。原理上,从电机的角度看,相同磁材的条件下, 提升电机的扭矩输出需要大幅增加电机的尺寸。以科尔摩根的 TBM2G 系列无框电机为例, 同等叠片长度下,峰值扭矩从 3Nm 提升到 6Nm,电机的叠片长度需增加一倍,电机体积 增加一倍;峰值扭矩从 2Nm 提升到 3Nm,外径从 94mm 增加到 115mm,外径增加 22%, 电机体积增加 50%。从减速器的角度看,谐波减速器的减速比一般在 50-300,行星减速 器的减速比一般在 10 以内。通过减速器类型的选择,谐波减速器相比行星减速器对于电 机扭矩的提升在 5-30 倍以上,而谐波减速器体积同样紧凑,并不会大幅增加关节的体积, 因此从扭矩密度的角度讲,高减速比方案更加具备优势。
准直驱方案在小负载关节经济性更好,控制更简单。在扭矩要求不高的关节,电机可 搭配行星减速器达到期望的扭矩输出。根据绿地谐波、双环传动等公司年报,谐波减速器 的价格大约在 1500 元左右,而行星减速器的价格仅为 300 元上下;并且准直驱方案易于 通过电流反算力矩输出,可节省力传感器的使用,进一步减少成本,因此在准直驱方案的 负载范围内,准直驱方案的关节经济性更好。但是准直驱在大负载关节做到高扭矩很困难, 需要增加高性能磁材的使用量或是采用跟复杂的电机磁路、冷却设计,电机的成本会大幅 增加。 机器人下肢对负载要求更高,谐波减速器减速比高,更容易满足设计要求。机器人的 上肢主要承担末端负载的载荷,而下肢需要承担机器人自重以及负载的重量,因此下肢关 节普遍需要更大的扭矩。以身高 180cm,自重 55kg 的 LOLA 机器人为例,髋部/膝部/踝 部/腰部/肩部/肘部关节的峰值扭矩需求分别为 370/390/286/147/110 Nm。机器人关节的直 径一般在 15cm 以内,相应大小的无框力矩电机的峰值扭矩一般在 5 Nm 以内,因此减速 器的减速比需要达到 74/78/57/30/22 倍以上。谐波减速器的减速比一般在 50-300,单级 行星减速器的减速比一般在 3-10。因此谐波减速器可以轻松满足机器人的减速比要求,而 行星减速比需要更换特制的大扭矩电机或者采用双级减速。
特斯拉招聘启事引发市场对于旋转执行器自产的担忧。2023 年 10 月 12 日,特斯拉 在官网上发布招聘启事,招聘 Optimus 生产主管,负责管理人形机器人执行器的产线,将 承担执行器原型机生产线的优先级管理、人员管理和执行,领导团队组装世界上扭矩和功 率最密集的人形执行器,将与制造和设计工程部门密切合作,并负责提供直接反馈以改进 装配工艺和设计。特斯拉发布招聘启事,引发市场对于特斯拉将自产执行器进而影响 Tier 1 供应商份额的担忧。
当前人形机器人行业处于研究开发阶段,产业链并没有完全形成,研发阶段旋转执行 器以机器人厂家自产为主。人形机器人的商业化从 2021 年开始重回大众视野,当前大多 数公司的人形机器人还处在试制和研发阶段,行业并没有进入到大规模量产阶段。人形机 器人旋转执行器的需求方兴未艾,产业链并没有完全形成,所以当前旋转执行器基本都是 机器人厂商自研自产。 进入量产阶段后,旋转执行器必然面临自产与代工模式的选择。随着机器人行业的发 展,产业进入量产阶段后,旋转执行器必然面临着机器人厂商自产与选择外部供应商代工 模式的选择。汽车和手机同为科技产品,在各自的特点下呈现出截然不同的行业分工。汽 车以自建工厂为主,新能源车时代的代工模式零星出现;苹果引领下,手机多采用代工模 式,部分企业采用自产和代工混合的模式。
手机与汽车作对比,手机的竞争壁垒在于软件和生态,汽车则更强调变速箱、底盘、 发动机等机械结构,手机更倾向于采用代工模式。随着手机行业的发展,各家厂商屏幕、 摄像头等硬件上的差距在逐渐缩小,手机的竞争核心在于软件和生态带给用户的体验感; 反观汽车,汽车变速箱、底盘等机械结构对于汽车驾驶的质感有很大影响。代工模式会带 来硬件技术向其他厂商外溢的风险,因此依靠硬件竞争的汽车往往采用自研自产,保护核 心竞争力。 人形机器人的核心竞争力来自于算法和软件。与工业机器人讲究精度和寿命不同,人 形机器人作为具身智能的载体,算法和软件是核心。一直以来,人形机器人的智能化程度 限制了人形机器人能承担的任务进而限制了应用场景。随着人工智能与大模型端到端网络 的突破,人形机器人的通用性进一步发展,下游的应用场景被拓宽。未来人形机器人厂商 的比拼将集中在机器人的算法和软件部分。
机器人与智能手机产业链相似,有望复现智能手机发展阶段变化。2007 年 iPhone 发 布标志智能手机时代到来,引发产业创新变革,吸引多玩家入局,创新驱动下产业链各环 节密切合作、百花齐放。中期,行业依靠技术的持续更新驱动市场快速增长,如“联发科 时刻”提供标准化软硬件方案,带动白牌入局加剧竞争,品牌呈发散趋势,高中低端并存驱动渗透率快速提升。叠加供应链逐步成熟,催化代工模式爆发。后期,市场格局逐渐走 向收敛,份额集中,大厂整合资源缩短产业链或建立固定合作关系,打造服务大客户供应 链体系,供应商亦纵横整合打造平台型企业提升客户粘性与配套价值量。我们预计机器人 行业会遵循类似发展规律,初期以智能芯片、伺服系统、减速器为主的通用性硬件受益, 到了中期需求量暴增利好成熟代工企业,后期市场稳定后市场份额向少数龙头集中。
核心竞争环节自产,非核心竞争环节合作的模式在特斯拉的新能源车业务上得到充分 体现。在新能源车时代,核心竞争壁垒从燃油车的底盘、变速箱和发动机,转变为三电系 统以及自动驾驶环节。以特斯拉的热管理系统的演进为例,新能源车热管理指的是电池包、 电机以及座舱的温度管理系统,在传统的架构下,三个热管理区域彼此独立。特斯拉的热 管理系统首创性的使用了八通阀,通过八通阀的开闭控制逻辑,将三个热管理区域连通, 实现整车热管理集成化,提高整体的能量利用效率。对于带八通阀的热管理系统,管路部 分的硬件设计极为复杂,不过最核心的部分在于换热系统算法对于八通阀开闭逻辑的控制, 因此特斯拉将八通阀的生产制造以及热管理系统的集成装配下放到HahaBet官网拓普等 Tier 1 供应商, 而自己掌握核心的算法环节。
降本一直是机器人的核心诉求之一。我们根据海外 Digit 等人形机器人的售价 25 万美 金,毛利率约为 25%推测,当前人形机器人的造价在十几万美金左右,成为当前阻碍人形 机器人大规模应用的瓶颈之一。根据特斯拉业绩交流会,未来特斯拉人形机器人的售价将 会降到 2 万美元左右,人形机器人的降本诉求十分迫切。回顾特斯拉新能源车业务的发展 历史,规模效应在新能源车和动力电池的成本下降中起到了重要作用。根据特斯拉股东大 会,随着新能源车和动力电池制造规模的扩大,新能源车中成本占比最高的动力电池的成 本迎来了大幅的下降,新能源车的成本从单车十几万美金下降到如今 2-3 万美元,成为了 新能源车渗透率能快速提升的基础。
手机制造的成本中人工组装环节比汽车更高,代工模式下成本优化显著。汽车生产线 已实现了较高程度的自动化水平,而手机制造中,手工组装的环节占比相对较高。因此对 于手机的制造,人工成本下降能显著降低生产成本。对于苹果等科技公司而言,人工成本 相比代工企业更高,并且也缺乏组织大规模生产的经验,因此代工模式更加被手机企业青 睐。
与手机装配线和汽车总装线类似,人形机器人执行器的总成仍需要依赖人工组装,执 行器成本在人形机器人中成本占比高。人形机器人执行器属于小型机电系统,涉及零部件 相互装配、线束的排布等精细操作,全自动生产仍有难度,类似于手机装配线和汽车总装 线,对于人工组装存在需求。同时,根据特斯拉 AI Day2,特斯拉人形机器人使用 14 个旋 转执行器和 14 个直线执行器,未来的售价在 2 万美金,根据产业链上各公司零部件的产 品价格,我们预计旋转执行器+线性执行器在机器人中成本约占 60%。因此从成本角度看, 通过专业的执行器生产商的生产执行器,机器人成本有望得到显著下降。
(本文仅供参考,不代表我们的任何投资建议。如需使用相关信息,请参阅报告原文。)